Given: If a , b , c , and d are positive integers, compare the following quantities: (i) a − b a − a = a b × c \frac{a^{-b}}{a^{-a}} = ab \times c a −...

Question

Given:

If a, b, c, and d are positive integers, compare the following quantities:

(i)

abaa=ab×c\frac{a^{-b}}{a^{-a}} = ab \times c

(ii)

a3×b3ab2=d4×b3d×b\frac{a^3 \times b^3}{ab^2} = \frac{d^4 \times b^3}{d \times b}

Quantity I: Find the value of c.

Quantity II: Find the value of d.

Compare Quantity I and Quantity II:

(a) Quantity I > Quantity II

(b) Quantity I < Quantity II

(c) Quantity I \geq Quantity II

(d) Quantity I \leq Quantity II

(e) Quantity I = Quantity II or no relation

Options

A.

Quantity I > Quantity II

B.

Quantity I < Quantity II

C.

Quantity I \geq Quantity II

D.

Quantity I \leq Quantity II

E.

Quantity I = Quantity II or no relation

exponentspowersalgebraquantity comparisonnumber system

Solve This Question

Get instant feedback with detailed step-by-step solution

Start Solving →