Given the two equations: (I) < s p a n c l a s s = " k a t e x " > < s p a n c l a s s = " k a t e x − m a t h m l " >...
Question
Given the two equations:
(I) <spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><msqrt><mn>289</mn></msqrt></mrow><annotationencoding="application/x−tex">x=289</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em;"></span><spanclass="mordmathnormal">x</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:1.04em;vertical−align:−0.1328em;"></span><spanclass="mordsqrt"><spanclass="vlist−tvlist−t2"><spanclass="vlist−r"><spanclass="vlist"style="height:0.9072em;"><spanclass="svg−align"style="top:−3em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="mord"style="padding−left:0.833em;"><spanclass="mord">289</span></span></span><spanstyle="top:−2.8672em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="hide−tail"style="min−width:0.853em;height:1.08em;"><svgxmlns="http://www.w3.org/2000/svg"width="400em"height="1.08em"viewBox="004000001080"preserveAspectRatio="xMinYMinslice"><pathd="M95,702c−2.7,0,−7.17,−2.7,−13.5,−8c−5.8,−5.3,−9.5,−10,−9.5,−14c0,−2,0.3,−3.3,1,−4c1.3,−2.7,23.83,−20.7,67.5,−54c44.2,−33.3,65.8,−50.3,66.5,−51c1.3,−1.3,3,−2,5,−2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,−71,104,−213c68.7,−142,137.5,−285,206.5,−429c69,−144,104.5,−217.7,106.5,−221l0−0c5.3,−9.3,12,−14,20,−14H400000v40H845.2724s−225.272,467,−225.272,467s−235,486,−235,486c−2.7,4.7,−9,7,−19,7c−6,0,−10,−1,−12,−3s−194,−422,−194,−422s−65,47,−65,47zM83480h400000v40h−400000z"/></svg></span></span></span><spanclass="vlist−s"></span></span><spanclass="vlist−r"><spanclass="vlist"style="height:0.1328em;"><span></span></span></span></span></span></span></span></span>
(II) <spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>289</mn></mrow><annotationencoding="application/x−tex">y2=289</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:1.0085em;vertical−align:−0.1944em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">289</span></span></span></span>
Determine the correct relationship between x and y:
Options
If <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>></mo><mi>y</mi></mrow><annotation encoding="application/x-tex">x > y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span>
If <spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>≥</mo><mi>y</mi></mrow><annotationencoding="application/x−tex">x≥y</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.7719em;vertical−align:−0.136em;"></span><spanclass="mordmathnormal">x</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">≥</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.625em;vertical−align:−0.1944em;"></span><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span></span></span></span>
If <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo><</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">x < y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span>
If <spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>≤</mo><mi>y</mi></mrow><annotationencoding="application/x−tex">x≤y</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.7719em;vertical−align:−0.136em;"></span><spanclass="mordmathnormal">x</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">≤</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.625em;vertical−align:−0.1944em;"></span><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span></span></span></span>
If x=y or no relation can be established between x and y