Given the two quadratic equations: (I) < s p a n c l a s s = " k a t e x " > < s p a n c l a s s = " k a t e x − m a t h m l &...

Question

Given the two quadratic equations:

(I) <spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>5</mn><mi>x</mi><mo></mo><mn>18</mn><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/xtex">7x2+5x18=0</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.8974em;verticalalign:0.0833em;"></span><spanclass="mord">7</span><spanclass="mord"><spanclass="mordmathnormal">x</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.7278em;verticalalign:0.0833em;"></span><spanclass="mord">5</span><spanclass="mordmathnormal">x</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">18</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>5</mn><mi>x</mi><mo>−</mo><mn>18</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">7x^2 + 5x - 18 = 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord">7</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">5</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">18</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span>

(II) <spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>y</mi><mo></mo><mn>20</mn><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/xtex">3y2+4y20=0</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:1.0085em;verticalalign:0.1944em;"></span><spanclass="mord">3</span><spanclass="mord"><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span><spanclass="msupsub"><spanclass="vlistt"><spanclass="vlistr"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:3.063em;marginright:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.8389em;verticalalign:0.1944em;"></span><spanclass="mord">4</span><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span><spanclass="mspace"style="marginright:0.2222em;"></span><spanclass="mbin"></span><spanclass="mspace"style="marginright:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">20</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>y</mi><mo>−</mo><mn>20</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">3y^2 + 4y - 20 = 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord">3</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">4</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">20</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span>

Determine the correct relationship between xx and yy where xx and yy are the roots of their respective equations.

Options

A.

If x>yx > y

B.

If <spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo></mo><mi>y</mi></mrow><annotationencoding="application/xtex">xy</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.7719em;verticalalign:0.136em;"></span><spanclass="mordmathnormal">x</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel"></span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.625em;verticalalign:0.1944em;"></span><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span></span></span></span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>≥</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">x \geq y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7719em;vertical-align:-0.136em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span>

C.

If x<yx < y

D.

If <spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo></mo><mi>y</mi></mrow><annotationencoding="application/xtex">xy</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:0.7719em;verticalalign:0.136em;"></span><spanclass="mordmathnormal">x</span><spanclass="mspace"style="marginright:0.2778em;"></span><spanclass="mrel"></span><spanclass="mspace"style="marginright:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.625em;verticalalign:0.1944em;"></span><spanclass="mordmathnormal"style="marginright:0.03588em;">y</span></span></span></span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>≤</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">x \leq y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7719em;vertical-align:-0.136em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span>

E.

If x=yx = y or no relation can be established between xx and yy

quadratic equationscomparisonrootsalgebra

Solve This Question

Get instant feedback with detailed step-by-step solution

Start Solving →