Given the two quadratic equations:
I. <spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>12</mn><mi>x</mi><mo>+</mo><mn>35</mn><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/x−tex">x2+12x+35=0</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8974em;vertical−align:−0.0833em;"></span><spanclass="mord"><spanclass="mordmathnormal">x</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.7278em;vertical−align:−0.0833em;"></span><spanclass="mord">12</span><spanclass="mordmathnormal">x</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">35</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span>
II. <spanclass="katex"><spanclass="katex−mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mn>7</mn><mi>y</mi><mo>+</mo><mn>10</mn><mo>=</mo><mn>0</mn></mrow><annotationencoding="application/x−tex">y2+7y+10=0</annotation></semantics></math></span><spanclass="katex−html"aria−hidden="true"><spanclass="base"><spanclass="strut"style="height:1.0085em;vertical−align:−0.1944em;"></span><spanclass="mord"><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span><spanclass="msupsub"><spanclass="vlist−t"><spanclass="vlist−r"><spanclass="vlist"style="height:0.8141em;"><spanstyle="top:−3.063em;margin−right:0.05em;"><spanclass="pstrut"style="height:2.7em;"></span><spanclass="sizingreset−size6size3mtight"><spanclass="mordmtight">2</span></span></span></span></span></span></span></span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.8389em;vertical−align:−0.1944em;"></span><spanclass="mord">7</span><spanclass="mordmathnormal"style="margin−right:0.03588em;">y</span><spanclass="mspace"style="margin−right:0.2222em;"></span><spanclass="mbin">+</span><spanclass="mspace"style="margin−right:0.2222em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">10</span><spanclass="mspace"style="margin−right:0.2778em;"></span><spanclass="mrel">=</span><spanclass="mspace"style="margin−right:0.2778em;"></span></span><spanclass="base"><spanclass="strut"style="height:0.6444em;"></span><spanclass="mord">0</span></span></span></span>
Solve both equations and determine the correct relationship between x and y.