If a cot ⁡ θ + b csc ⁡ θ = p a \cot \theta + b \csc \theta = p a cot θ + b csc θ = p and b cot ⁡ θ + a csc ⁡ θ = q b \cot \theta + a \csc \theta = q b...

Question

If acotθ+bcscθ=pa \cot \theta + b \csc \theta = p and bcotθ+acscθ=qb \cot \theta + a \csc \theta = q, then find the value of p2q2p^2 - q^2.

Options

A.

b2a2b^2 - a^2

B.

a2b2a^2 - b^2

C.

bab - a

D.

a2+b2a^2 + b^2

trigonometryidentitiescotangentcosecantalgebraic manipulation

Solve This Question

Get instant feedback with detailed step-by-step solution

Start Solving →