If a b b a ( c d + d c ) = c d d c ( a b + b a ) , a^{b}b^{a} (c^{d} + d^{c}) = c^{d}d^{c} (a^{b} + b^{a}), a b b a ( c d + d c ) = c d d c ( a b + b ...

Question

If

abba(cd+dc)=cddc(ab+ba),a^{b}b^{a} (c^{d} + d^{c}) = c^{d}d^{c} (a^{b} + b^{a}),
where
a,b,c,deq0,a, b, c, d
eq 0,
which of the following statements is/are correct?

  1. 1ba+1ab=1cd+1dc\frac{1}{b^{a}} + \frac{1}{a^{b}} = \frac{1}{c^{d}} + \frac{1}{d^{c}}
  2. If

    abdc=0,a^{b} - d^{c} = 0,
    then
    cdc^{d}
    must be equal to
    ba,b^{a},
    for all real values of
    a,b,c,d.a, b, c, d.

  3. Given

    c=0,c=0,
    then
    ab+ba=1,a^{b} + b^{a} = 1,
    assuming
    dd
    is a non-zero number.

Options

A.

Only 1

B.

Only 2

C.

Only 1 & 3

D.

Only 3

E.

None of the above

exponentspowersalgebraequationsnumber systems

Solve This Question

Get instant feedback with detailed step-by-step solution

Start Solving →