The value of 1 + ( 1 + 1 3 ) 1 4 + ( 1 + 1 3 + 1 9 ) 1 16 + ( 1 + 1 3 + 1 9 + 1 27 ) 1 64 + ⋯ 1 + \left(1 + \frac{1}{3}\right)\frac{1}{4} + \left(1 + ...

Question

The value of

1+(1+13)14+(1+13+19)116+(1+13+19+127)164+1 + \left(1 + \frac{1}{3}\right)\frac{1}{4} + \left(1 + \frac{1}{3} + \frac{1}{9}\right)\frac{1}{16} + \left(1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27}\right)\frac{1}{64} + \cdots
is:

Options

A.
1513\frac{15}{13}
B.
1611\frac{16}{11}
C.
2712\frac{27}{12}
D.
158\frac{15}{8}
cat 2023infinite seriesgeometric progressionsummation

Solve This Question

Get instant feedback with detailed step-by-step solution

Start Solving →