The scatter chart below shows the number of boys (Y-axis) and number of girls (X-axis) in three different classes: P, Q, and R. Note: If there were 10...

Question

The scatter chart below shows the number of boys (Y-axis) and number of girls (X-axis) in three different classes: P, Q, and R.

Note: If there were 10 more girls in class R, then the probability of selecting a girl from class R would be 40%.
image.png
The number of girls in class Q is <spanclass="katex"><spanclass="katexmathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>200</mn><mn>3</mn></mfrac></mrow><annotationencoding="application/xtex">2003</annotation></semantics></math></span><spanclass="katexhtml"ariahidden="true"><spanclass="base"><spanclass="strut"style="height:1.1901em;verticalalign:0.345em;"></span><spanclass="mord"><spanclass="mopennulldelimiter"></span><spanclass="mfrac"><spanclass="vlisttvlistt2"><spanclass="vlistr"><spanclass="vlist"style="height:0.8451em;"><spanstyle="top:2.655em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">3</span></span></span></span><spanstyle="top:3.23em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="fracline"style="borderbottomwidth:0.04em;"></span></span><spanstyle="top:3.394em;"><spanclass="pstrut"style="height:3em;"></span><spanclass="sizingresetsize6size3mtight"><spanclass="mordmtight"><spanclass="mordmtight">200</span></span></span></span></span><spanclass="vlists"></span></span><spanclass="vlistr"><spanclass="vlist"style="height:0.345em;"><span></span></span></span></span></span><spanclass="mclosenulldelimiter"></span></span></span></span></span>%<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>200</mn><mn>3</mn></mfrac></mrow><annotation encoding="application/x-tex">\frac{200}{3}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1901em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">200</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span>% of the number of girls in class R. If the number of boys in class S is 20% more than the boys in class Q and the number of girls in class S is the same as that of class Q, then find the probability of selecting two girls from class S.

Options

A.

37247\frac{37}{247}

B.

95473\frac{95}{473}

C.

33473\frac{33}{473}

D.

35214\frac{35}{214}

E.

37213\frac{37}{213}

probabilityscatter chartclass datacombinatorics

Solve This Question

Get instant feedback with detailed step-by-step solution

Start Solving →